How to Bridge

‘

Dan McGlinn

python’

-ty

p= W%ye-mm
Weecology Lab

danmcglinn@gmail.com

T

python

Developed by programmers

Good style and clear rules
enforced

Few functions

Numerical packages are
cutting edge

Statistical packages are still
relatively young

Ecologists not familiar with

Developed by stat gurus

Style not well defined or
enforced

L_ots of functions

Numerical operations not
as powerful

Statistical packages are top
notch

Ecologists familiar with

Our Goals

 Call python and R scripts from the shell
* Evoke the command line within R and python

« Use Python modules to interactively call R

The Shell

aka the terminal or command prompt
* Provides a textual way to interact with your OS
— control files, processes, and networking

* We can use the shell to interact directly with R
and python

* Examples
$ python my_python_script.py

$ Rscript my_r_script.R

M > danmcglinn@ubuntu-vm: ~

EX Administrator: Command Prompt

Microzoft Windows [Uersion 6.1.76H11]
Copyright <c>» 2080? Microsoft Corporation.

danmcglinn@ubuntu-vm:~$ |

C:sUserssDan McGlinn>

Communicating with the
terminal

* |In Python P

>>> 1mport os

>>> 0s.system(“python my_python_script.py”)
>>> # alternatively call an R script

>>> 0S.system(“Rscript my_r_script.R”)

e InNR

> system(“python my_r_script.r”)
> # alternatively call a python script
> system(“python my_python_script.py”)

python

Time to Try It out

 Create a simple python script that prints
anything to the console

* From the shell call your script

* From the python interpreter call your script
using
>>>Tmport os
>>>0S.system(“python my_python_script.py”)

Python modules to link

python and R

RSPython

— last development in 2005
— allows bidirectional interactive sessions

pypeR

— no recent (i.e. last year) development activity
— uses pipes to establish interactive R sessions

pyRserve

— In beta but stable
— uses Rserve to establish interactive R sessions

Rpy/Rpy?2
— most popular module for interfacing with R
— python to R Interactive sessions

pyRserve

Connects to an R process via Rserve
Each R Instance Is like connecting to a server

Pros

— Can run on a remote machine

— Allows easy parallelization of R processes

— Pythonic style

— Plays nice with numpy

cons

— Installing Rserve can be challenging even in Linux

pyRserve examples

>>> connh = pyRserve.connect()

>>> conn.r(“3 + 47)

7.0

>>> conn.r(“mean(c(3, 4, 5)7)

4

>>> conn.r("a = 37)

or alternatively set a with an attribute
>>> conn.r.a = 3

>>> print conn.r.a

3

R
R
R

-)
Rpy/Rpy?2 Ry

oy IS older and no longer being developed
ny2 adds greater capabilities and object classes

0y2 1S the backbone of Rmagic in ipython

Pros

— Rpy & Rpy2 are popular -> there is a user group to

guery when you have trouble

— Play nice with numpy

— Pythonic style

— Rpy and Rpy2 are easy to install in Linux
cons

In Windows, it is difficult to get Rpy2 installed,;
however, Rpy Is straightforward to install.

22

Rpy/Rpy2 sub-packages Gy

rpy2.rinterface

— Low-level interface to R, when speed and flexibility matter most. Close to R’s
C-level APL.

rpy2.robjects

— High-level interface, when ease-of-use matters most. Should be the right pick
for casual and general use. Based on the previous one.

rpy2.interactive

— High-level interface, with an eye for interactive work. Largely based on
rpy2.robjects.

rpy2.rpy_classic

— High-level interface similar to the one in RPy-1.x. This is provided for
compatibility reasons, as well as to facilitate the migration to RPy2.

rpy2.rlike

— Data structures and functions to mimic some of R’s features and specificities in
pure Python (no embedded R process).

Time for an Rpy2 Demo

