
How to Bridge

Dan McGlinn

danmcglinn@gmail.com

Weecology Lab

vs

• Developed by programmers

• Good style and clear rules

enforced

• Few functions

• Numerical packages are

cutting edge

• Statistical packages are still

relatively young

• Ecologists not familiar with

• Developed by stat gurus

• Style not well defined or

enforced

• Lots of functions

• Numerical operations not

as powerful

• Statistical packages are top

notch

• Ecologists familiar with

Our Goals

• Call python and R scripts from the shell

• Evoke the command line within R and python

• Use Python modules to interactively call R

The Shell
aka the terminal or command prompt

• Provides a textual way to interact with your OS

– control files, processes, and networking

• We can use the shell to interact directly with R

and python

• Examples
$ python my_python_script.py

$ Rscript my_r_script.R

Communicating with the

terminal

• In Python
>>> import os

>>> os.system(“python my_python_script.py”)

>>> # alternatively call an R script

>>> os.system(“Rscript my_r_script.R”)

• In R
> system(“python my_r_script.r”)

> # alternatively call a python script

> system(“python my_python_script.py”)

Time to Try It out

• Create a simple python script that prints

anything to the console

• From the shell call your script

• From the python interpreter call your script

using
>>>import os

>>>os.system(“python my_python_script.py”)

Python modules to link

python and R
• RSPython

– last development in 2005

– allows bidirectional interactive sessions

• pypeR
– no recent (i.e. last year) development activity

– uses pipes to establish interactive R sessions

• pyRserve
– in beta but stable

– uses Rserve to establish interactive R sessions

• Rpy/Rpy2
– most popular module for interfacing with R

– python to R interactive sessions

pyRserve

• Connects to an R process via Rserve

• Each R instance is like connecting to a server

• Pros

– Can run on a remote machine

– Allows easy parallelization of R processes

– Pythonic style

– Plays nice with numpy

• Cons

– Installing Rserve can be challenging even in Linux

pyRserve examples

>>> conn = pyRserve.connect()

>>> conn.r(“3 + 4”)

7.0

>>> conn.r(“mean(c(3, 4, 5)”)

4

>>> conn.r(“a = 3”)

or alternatively set a with an attribute

>>> conn.r.a = 3

>>> print conn.r.a

3

Rpy/Rpy2

• Rpy is older and no longer being developed

• Rpy2 adds greater capabilities and object classes

• Rpy2 is the backbone of Rmagic in ipython

• Pros
– Rpy & Rpy2 are popular -> there is a user group to

query when you have trouble

– Play nice with numpy

– Pythonic style

– Rpy and Rpy2 are easy to install in Linux

• Cons
– In Windows, it is difficult to get Rpy2 installed;

however, Rpy is straightforward to install.

Rpy/Rpy2 sub-packages

• rpy2.rinterface
– Low-level interface to R, when speed and flexibility matter most. Close to R’s

C-level API.

• rpy2.robjects
– High-level interface, when ease-of-use matters most. Should be the right pick

for casual and general use. Based on the previous one.

• rpy2.interactive
– High-level interface, with an eye for interactive work. Largely based on

rpy2.robjects.

• rpy2.rpy_classic
– High-level interface similar to the one in RPy-1.x. This is provided for

compatibility reasons, as well as to facilitate the migration to RPy2.

• rpy2.rlike
– Data structures and functions to mimic some of R’s features and specificities in

pure Python (no embedded R process).

Time for an Rpy2 Demo

